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SUMMARY

The paper presents a numerical investigation of non-Newtonian modelling e�ects on unsteady peri-
odic �ows in a two-dimensional (2D) channel with a stenosis. The geometry and boundary conditions
were chosen so as to reproduce the �ow features that are observed in real haemodynamic conditions.
Three di�erent non-Newtonian constitutive equations for modelling the shear characteristics of the blood
namely the Casson, power-law and Quemada models, are utilized. Similarly with previous studies based
on Newtonian modelling, the present simulations show the formation of several vortices downstream
of the stenosis, as well as substantial variations of the wall shear stress throughout the unsteady cy-
cle. Additionally, it is shown that: (i) there are substantial di�erences between the results obtained by
Newtonian and non-Newtonian models, and (ii) the prediction of vortex formation, wall shear stress
distribution and separation behind the stenosis is strongly dependent on the details of the non-Newtonian
model employed in the simulations. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The role of �uid mechanics in atherogenesis has been investigated for many years in order
to determine the �ow characteristics that are linked with atherosclerosis formation. So far, it
is known that atherosclerotic lesions do not occur randomly in the arterial network, but tend
to be localized at sites where blood �ow e�ects di�er from those in straight arteries. There
is evidence [1] that the localized adhesion of fatty streaks re�ects a non-uniformity of the
artery-wall permeability. Nerem et al. [2] have shown that regions of greatest permeability
are well correlated with the regions in which fatty streaks develop in cholesterol-fed ani-
mals. Furthermore, they showed that there is direct dependence of the wall permeability on
steady shears and reported stronger dependence on the amplitude of oscillatory shear stresses.
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Experiments by Fry [3] show that maintaining the wall shear stress (WSS) at high levels for
a short time causes irreversible damage to the endothelial surface leading, subsequently, to a
great enhancing of its permeability. Despite the above studies, the causes of the initiation and
progression of the arterial lesions still remain unclear.
Due to the importance of the atherosclerotic disease the understanding of the mechanism

of atheromatosis formation has also been attempted through computational �uid dynamics.
Several researchers have modelled numerically stenotic arterial �ows [4–7]. In these studies a
two-dimensional channel was employed, with the �ow being considered as unsteady and New-
tonian. The investigations aimed at understanding the mechanism of vortex formation [4–9],
or the mass transfer rate and WSS distribution [10] behind the stenosis. In a recent study [8],
three-dimensional �ow e�ects in stenotic (Newtonian) �ows were investigated, including study
of instabilities and transition to turbulence. It was found that three-dimensional instabilities
share similarities with the instabilities observed in two-dimensional suddenly expanded �ows
[11]. Physiological �ow e�ects in a 3D non-symmetric geometry of a stenosis have also been
numerically studied [12] and showed that the side of the wall with the stenosis experiences a
higher shearing stress compared to the other side without any protuberance.
In addition to the Newtonian �ow studies, there have been a few investigations based on

non-Newtonian modelling of the blood. Buchanan et al. [13] employed the Quemada and
power-law models for an axisymmetric stenotic channel and investigated the accumulation
of �ow particles in the vortex formation under a sinusoidal input pulse. Tu et al. [9] also
used the Herschel–Bulkley model for studying an axisymmetric stenotic �ow under unsteady
in�ow conditions. Srivastava and Saxena [14] studied the �ow through stenotic small arteries
with the blood represented by a two-�uid Newtonian–Casson model in order to investigate
the relation between the WSS and the viscosity of the peripheral layer. Furthermore in the
broader �eld of haemodynamic �ows, numerical studies using spectral=hp element methods
[15] have been carried out in order to encompass more complicated 3D geometries that stem
from medical images.
The aim of the present study is to investigate non-Newtonian modelling e�ects on the

unsteady periodic �ow through a stenosis using the most well-documented blood constitutive
equations, namely the Casson [16], power law [17] and Quemada [18] models. Newtonian and
non-Newtonian �ow computations have been carried out in order to examine the modelling
e�ects with respect to the vortex formation and WSS distribution. Additionally, a numerical
investigation of the �ow behaviour at di�erent Strouhal numbers has been conducted. The
Strouhal numbers employed here apply to di�erent heart rates corresponding to normal and
tachycardial conditions. The computations reveal that the results for the vortex formation and
the WSS distribution (especially its peak values) are dependent on the non-Newtonian model
employed.

2. MODEL EQUATIONS

2.1. Governing equations

The problem is governed by the Navier–Stokes equations for a two-dimensional incompressible
�ow. These are the continuity equation∫

S
V · dS=0 (1)
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where V=[u; v]T, with u and v being the velocity components in the x and y directions,
respectively, and momentum equations

@
@t

∫
�
�u d� +

∫
S
�uV · dS=−

∫
S
pix · dS+

∫
S
(�xxix + �xyiy) · dS (2a)

@
@t

∫
�
�v d� +

∫
S
�vV · dS=−

∫
S
piy · dS+

∫
S
(�yxix + �yyiy) · dS (2b)

for the x and y directions respectively. � represents volume; dS equals to n · dS where n is
the unit vector normal to the surface dS; ix, iy are the unit vectors in the x and y directions,
respectively; p is the pressure and � is the density. The equations are solved on a curvilinear
body-�tted grid (see also Section 4.1). The shear stress � in the di�usion terms of (2a) and
(2b) are written in terms of the shear rate � as

�ij =��ij (3)

where i; j= x; y. The molecular viscosity coe�cient � is constant for Newtonian �ows, whereas
it is a function of the shear rate � in the case of non-Newtonian �ows. The shear rate can be
written in tensor form as

�S=2 �D=∇V+∇VT (4)

where �D is the deformation tensor. Hence (3) can also be written as

��=� �S (5)

where �� is the shear-stress tensor.
Following the principle of material objectivity, i.e. � should remain unchanged regardless

of the frame of reference, the expression for �S involves the second invariant of the rate of
deformation tensor IID, that is

| �S|=
√
2 tr( �D2) (6)

Therefore, in the case of non-Newtonian �uids the general relation between � and �S is

��=�(| �S|) �S (7)

For two- or three-dimensional numerical simulations, any constitutive equation in simple shear
form for viscous non-Newtonian �ows should �rst be written as

�=�(�) · � (8)

and then expressed in tensorial form, as in (7), so that �(| �S|), which is referred to as the
‘e�ective viscosity’, can be speci�ed. The e�ective viscosity is then used for the calculation
of the di�usion terms in the Navier–Stokes equations.
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Substituting (5) into (1) and (2), and non-dimensionalizing all the variables in the governing
equations, the di�usion terms (DT) then become

DT′
x =

1
�U∞l

∫
S∗
�(�∗xxix + �

∗
xyiy) · dS∗ (9)

DT′
y =

1
�U∞l

∫
S∗
�(�∗yxix + �

∗
yyiy) · dS∗ (10)

where the asterisk superscript denotes dimensionless quantities and �, U∞ and l are the
reference density, velocity and length, respectively, utilized in the non-dimensionalization. The
e�ective viscosity should be expressed in terms of the non-dimensional | �S|, that is, �(| �S|∗).
According to the non-dimensionalization procedure

| �S|∗= | �S|
U∞=l

(11)

Generally �(| �S|∗) can be decomposed as a product of constant part, say C0, and a function
of | �S|∗, say f(| �S|∗), so that

�(| �S|∗)=C0f(| �S|∗) (12)

Inserting (12) into (9) and (10), one can see that a term similar to a Reynolds number results
in front of the di�usion terms; this term is de�ned by

Re′=
�U∞l
C0

(13)

In the case where � is constant (that is, Newtonian �ow), C0 =� and f(| �S|∗)=1.

2.2. Non-Newtonian models

Three non-Newtonian constitutive relationships have been employed for modelling the di�usive
terms
(i) Casson model [16]: This is the most broadly used model to represent the rheological

behaviour of blood. Casson’s [16] constitutive equation is given by
√
�=

√
�y +

√
�∞�; |�|¿�y

�=0; |�|¡�y
(14)

where �y is the yield stress and �∞ is the asymptotic viscosity. According to Charm et al.
[1, 19] for blood �y = 10:82mPa and �∞=3:1× 10−3 Pa s. Equation (14) can also be written
in the form of (8) as

�=
(√

�y
�
+

√
�∞

)2
�; |�|¿�y

�=0; |�|¡�y
(15)
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Therefore, its tensorial form is

��=
(√

�y
| �S| +

√
�∞

)2
�S; |��|¿�y

�S= 0; |��|¡�y
(16)

The di�culty in applying Casson’s equation in numerical schemes lies in its discontinuous
character. Papanastasiou [20] proposed an alternative expression that overcomes this obstacle,
that is, one equation for the whole range of shear-stress values. According to Papanastasiou
[20], (16) is rewritten as

��=
[√
�∞ +

√
�y
| �S| (1− e

−
√
m| �S|)

]2
�S (17)

This equation has been found [21] to approach Casson’s equation very satisfactorily for
m¿100. Comparing (17) with (7), one concludes that the e�ective viscosity is

�(| �S|)=
[√
�∞ +

√
�y
| �S| (1− e

−
√
m| �S|)

]2
(18)

The dimensionless expression of (18) according to (11) is

�(| �S|∗)=�∞
[
1 +

√
Bi
| �S|∗ (1− e

−
√
m′| �S|∗)

]2
(19)

where m′=m=l=U∞ and Bi is the Bingham number de�ned by

Bi=
�yl

�∞U∞
(20)

According to (12), in the case of a Casson-model-based �ow

C0 =�∞; f(| �S|∗)=
[
1 +

√
Bi
| �S|∗ (1− e

−
√
m′| �S|∗)

]2
(21)

and taking into account (13), Re′, which in this case is referred to as ReCA, is de�ned as

ReCA =
�U∞l
�∞

(22)

The characteristic parameters for a Casson-model-based �ow are ReCA and Bi.
(ii) Power-law model: We have employed the version of the power-law model as proposed

by Walburn and Schneck [17] (this is also referred to as ‘Best three variable model’). The
model takes into account the haematocrit (H) and the total protein minus albumin (TPMA).
The shear stress is given by

�= k�n (23)
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According to Walburn and Schneck [17], for normal blood samples the parameters in (23)
are k=14:67× 10−3 Pa sn and n=0:7755. Bringing (23) into the form of (8), we obtain

�= k�n−1� (24)

and its tensorial form is

��= k| �S|n−1 �S (25)

Comparing (25) with (7), one concludes that the e�ective viscosity is

�(| �S|)= k| �S|n−1 (26)

Using (11), the dimensionless form of (26) is

�(| �S|∗)= k U
n−1
∞
ln−1

| �S|∗n−1
(27)

According to (12), in the case of a power-law-model-based �ow

C0 = k
Un−1

∞
ln−1

; f(| �S|∗)= | �S|∗n−1
(28)

Following (13), Re′, which in this case is referred to as RePL, is given by

RePL =
�ln

kUn−2∞
(29)

The characteristic parameter for a power-law-model-based �ow is RePL.
(iii) Quemada’s model [18]: Quemada [18] proposed a model, derived to predict the vis-

cosity of concentrated disperse systems, based on shear rate and haematocrit. The shear stress
is given by

�=�F

(
1− 1

2
k0 + k∞

√
�=�c

1 +
√
�=�c

’

)−2
� (30)

where �F =1:2×10−3Pa s is the viscosity of plasma (suspending medium) and for haematocrit
’=0:45 the values of the parameters are �c=1:88s−1, k∞=2:07 and k0 = 4:33. Equation (30)
is already written in the form of (8). Its tensorial form would be

��=�F

(
1− 1

2
k0 + k∞

√| �S|=�c
1 +

√| �S|=�c
’

)−2
�S (31)

Comparing (31) with (7), one concludes that the e�ective viscosity is

�(| �S|)=�F
(
1− 1

2
k0 + k∞

√| �S|=�c
1 +

√| �S|=�c
’

)−2
(32)

The dimensionless expression of (32) according to (11) is

�(| �S|∗)=�F
(
1− 1

2
k0 + k∞

√| �S|∗=�∗c
1 +

√| �S|∗=�∗c
’

)−2
(33)
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where

�∗c =
�c
U∞=l

(34)

According to (12), in the case of a Quemada-model-based �ow

C0 =�F ; f(| �S|∗)=
(
1− 1

2
k0 + k∞

√| �S|∗=�∗c
1 +

√| �S|∗=�∗c
’

)−2
(35)

Taking into account (13), Re′, which in this case is referred to as ReQU, is given by

ReQU =
�U∞l
�F

(36)

The characteristic parameters for a Quemada-model-based �ow are ReQU and �∗c .

2.3. Geometry and parameters

The geometry of the problem consists of a channel with an arc-shaped stenosis (Figure 1(i))
and is similar to the one used by Rosenfeld [4, 5] for studying the vortex-formation mecha-
nism behind the stenosis. The dimensionless parameters of the channel geometry are Lu = 7,
Ld = 28:34, H =1. The value of the downstream length Ld was chosen so that the fully de-
veloped velocity pro�le can be restored at the outlet as it will be later discussed.
The non-dimensionalization and calculation of the dimensionless parameters were based on

a mean inlet velocity, Us (de�ned later), and the channel height, H . Therefore, the Reynolds
(for Newtonian �ow) and Strouhal numbers are de�ned as

Re=
�UsH
�

; Str=
H
UsT

(37)

where T is a characteristic time length in the de�nition of the problem. The non-Newtonian
parameters RePL and Bi for the Casson, RePL for the power law, and �∗c and ReQU for the
Quemada models (Equation (20), (22), (29), (34) and (36), respectively) are written:

ReCA =
�UsH
�∞

; Bi=
�yH
�∞Us

; RePL =
�Hn

kUn−2
s

; �∗c =
�c
Us=H

; ReQU =
�UsH
�F

(38)

The comparison between di�erent Newtonian and non-Newtonian models at a given Reynolds
number is based on the same values of Us and H . For example, if the value of H is known,
Us can be calculated from (37) so that �nally all the non-Newtonian parameters in (38) can
be calculated. In other words, the comparisons are carried out for the same in�ow rate.

2.4. Boundary conditions

The computational boundaries are de�ned (in dimensionless units) as follows: the wall bound-
ary is at y=0 and y=1 ∀x∈ [0; 7]∪ [11:66; 40] and at y=0 and y=1 − (a − R +√
R2 − [b=2− (x − Lu)]2) where R=[a2 + (b=2)2]=2a ∀x∈ (7; 11:66) and a=0:56, b=4:66

(Figure 1(i)). The in�ow boundary is at x=0 ∀y∈ [0; 1] and the out�ow boundary is at
x=40 ∀y∈ [0; 1]. At the wall boundary, the pressure values are derived by extrapolation
from inside the domain, whereas the velocity boundary value is set equal to zero following
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a 
H

Lu b Ld 

(i)

(ii) 

(iii) 

w
 

0 5 10 15 20 25 30
x

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

900×150

450×100

225×50

ePw

s

n

S

EW 

N

nenw

sw se

τ

Figure 1. (i) Geometry of the channel with a stenosis. (ii) Topology of grid with collocated arrangement
of variables. (iii) Grid independence using the upper wall DWSS distribution for the case of a steady
Newtonian �ow with Re=360. (iv) Comparison of outlet velocity pro�le between numerical prediction
and theory for the Newtonian �ow case with Re=360; Str=0:05 at t=T =0:7. (v) Comparison of the
upper wall DWSS distribution for the Newtonian �ow case with Re=360; Str=0:368 at t=T =0:2 of
subsequent cycles of the period. (vi) Comparison of the present results with experimental and numer-
ical data from Rosenfeld [18] and Park [26] for the location of the B1 vortex throughout the period
(Newtonian case at Re=360 and 180, and Str=0:368). (vii) Streamlines for the steady �ow using the
Newtonian and non-Newtonian models. (viii) Dimensionless pressure distribution for the steady �ow

using the Newtonian and non-Newtonian models.
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Figure 1. Continued.
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Figure 1. Continued.

the no-slip condition. At the out�ow boundary, the velocity values at each node i=N are
extrapolated from the values at the two inner nodes i=N − 1 and i=N − 2, whereas the
pressure is set equal to the reference value of 1. At the in�ow boundary, the pressure value at
each node i=1 is derived by linear extrapolation from the values at the two inner nodes i=2
and 3, whereas the dimensionless mean in�ow velocity U (t) for every time instant throughout
the period is

U (t)=Us; 06t6
1
2

U (t)=Us −Up sin(2�t); 1
2
¡t61

(39)

where t is the dimensionless time (non-dimensionalized with respect to T ). The dimensionless
values for Us, (reference velocity) and Up are 1 and 1.22, respectively.
To specify the in�ow velocity for the Newtonian and non-Newtonian �ow cases one should

write the relation for U (t) in (39) in Fourier series. This expression is the real part of a
complex Fourier series

U (t)=Real
( ∞∑
n=0
Une−2�nti

)
(40)
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where

U0 =Us +
Up
�
; U1 = − Up

2
i; Un= − 2

n2 − 1
Up
�

for n=2; 4; 6; : : : ; Un=0

for n=3; 5; 7; : : : (41)

and i=
√−1. The in�ow velocity pro�le should correspond to the fully developed periodic

�ow in a 2D channel with parallel wall at a distance of H =1. Considering a Newtonian
�uid, the dimensionless Navier–Stokes equations are reduced to

Str
@u
@t
=−@p

@x
+
1
Re

@2u
@y2

(42)

where u= u(y; t) is the velocity pro�le for which u(y; t)= u(y; t + 1) due to the periodicity
of the �ow. Developing u and p in (42) in a Fourier series expansion and following the
rationale used in obtaining the velocity pro�le for the Poiseuille �ow, the time-dependent
velocity pro�le yields

u(y; t)=Real
(
6U0y(1− y) +

∞∑
n=1
UnAn(y)e−2�nti

)
(43)

where

An(y)=
(
1− cosh an(y − 1=2)

cosh an=2

)/(
1− 2 sinh an=2

a cosh an=2

)
(44)

and an=(1− i)
√
�nRe Str.

Equation (43) gives the Newtonian velocity pro�le for a periodical �ow of a known mean
in�ow-velocity waveform in a channel with parallel walls. This pro�le is used as an in�ow
boundary condition for the Newtonian and non-Newtonian cases presented here.

3. NUMERICAL METHOD

The solution of the equations that model the problem is based on the �nite-volume scheme
[22] with a collocated arrangement of variables in conjunction with the SIMPLE algorithm
[23]. The equations are solved through an iterative procedure. Rewriting Equations (1) and
(2) in non-dimensional form and omitting the star superscript yields∫

S
V · dS = 0 (45)

Str
@
@t

∫
�
u d� +

∫
S
uV · dS= −

∫
S
pix · dS+

∫
S
�
(
∇u+ @u

@x
ix +

@v
@x
iy

)
· dS (46a)

Str
@
@t

∫
�
v d� +

∫
S
vV · dS= −

∫
S
piy · dS+

∫
S
�
(
∇v+ @u

@y
ix +

@v
@y
iy

)
· dS (46b)

The discretization method will be analysed for the continuity equation (45) and the x-
momentum equation (46a) whereas the analysis for (46b) is similar. For the discretization

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:597–635
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of the unsteady term on the control volume (CV) with centre P (Figure 1(ii)) a �rst-order
scheme is introduced, thus

@
@t

∫
�
u d�≈ ��

�t
(uP − unP) (47)

For the discretization of the other terms in (46a) the surface integrals may be split into four
CV face integrals. Attention will be focused on face ‘e’ (Figure 1(ii)) and the other faces
are assumed to be treated in the same way. In discretizing the convection term, the mass �ux
through face ‘e’ is evaluated using existing known velocity

ṁme =
∫
Se
V · dS≈ um−1e Se (48)

where um−1e can be calculated by linear interpolation between um−1P and um−1E ; m and m − 1
denote the current and previous iterations, respectively. Hence, the convection term becomes∫

Se
uV · dS≈ ṁeue (49)

The value of ue can be calculated using either an upwind di�erence scheme (UDS) or a
central di�erence scheme (CDS). The UDS yields

ue=
{
uP if (V ·S)e¿0
uE if (V ·S)e¡0 (50)

and the CDS yields

ue= uEle + uP(1− le) (51)

where

le=
xe − xP
xE − xP (52)

For better numerical convergence, a combination of the aforementioned schemes is used.
This is known as the deferred correction approach, that is∫

Se
uV · dS≈ ṁeuUDSe + ṁe(uCDSe − uUDSe )m−1 (53)

where the superscripts CDS and UDS denote approximation by central and upwind di�erences,
respectively. The term in brackets is evaluated using values from the previous iteration while
the matrix of the unknown variables is computed using the UDS approximation.
Calculation of the di�usive term requires evaluation of the stresses �xx and �xy on the CV

faces ‘e’ and ‘n’, respectively. CD approximation leads to∫
Se; n
�
(
∇u+ @u

@x
ix +

@v
@x
iy

)
· dS=2

(
�
@u
@x

)
e
Se +

(
�
@v
@x
+ �

@u
@y

)
n
Sn

≈ �e uE − uPxE − xP Se + �n
uN − uP
xN − xP Sn +

(
�e
uE − uP
xE − xP Se + �n

vne − vnw
xne − xnw Sn

)m−1 (54)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:597–635



EFFECT OF BLOOD MODEL ON FLOW THROUGH STENOSIS 609

where Sn= xne − xnw and Se=yne − yse. The values of �e and �n are calculated from (12)
using the values of u and v from the previous iteration. The term vne − vsw is calculated by
linear interpolation from the corresponding values at the surrounding nodes.
The pressure term of the x-momentum equation corresponding to the whole CV is dis-

cretized as

−
∫
S
pix · dS≈− (peSe − pwSw)m−1 (55)

where pm−1e and pm−1w can be calculated by linear interpolation between pm−1P and pm−1E , and
between pm−1P and pm−1W , respectively.
If the aforementioned approximations are substituted into (46a) the following algebraic

equation is obtained:

AxPuP +
∑
i
Axi ui=Q

x
P; i=E;W;N; S (56)

where Ai are the coe�cients of the unknowns and QP are the source terms containing all
known terms arising from the discretization.
The coe�cients for the y-momentum equation (46b) are obtained in a similar fashion

yielding a discretized equation similar to (56):

AyPvP +
∑
i
Ayi vi=Q

y
P; i=E;W;N; S (57)

For solving the �ow and pressure �eld the SIMPLE method is applied. In the �rst step
of the method a pressure-(pm−1) and a velocity �eld (um−1; vm−1) are guessed. Then the
discretized momentum equations (56) and (57) are solved using the guessed �eld to yield the
velocity components u∗, v∗. These values do not generally satisfy mass conservation on each
CV. Therefore, the velocities u∗ and v∗ need to be corrected as follows:

um= u∗ + u′; vm= v∗ + v′ (58)

and the �nal values in the m iteration should also satisfy the momentum equation. This is
possible only if the pressure also is corrected:

pm=pm−1 + p′ (59)

Expressing the velocity on cell face e in terms of the momentum equation one can obtain
two equations for each of u∗ and um. Subtracting these equations yields

u′e=Be − Ce(p′
E − p′

P)Se (60)

where Be is a term that includes velocity correction terms on other nodes whereas Ce accounts
for geometric properties of the current CV. The corrected velocities are required to satisfy
the continuity equation. If the mass �ux through cell face ‘e’ is

ṁe= ume Se=(u
∗
e + u

′
e)Se (61)

then similar expression for the rest of the CV faces yields∑
c
ṁc=�ṁ∗ +�ṁ′=0; c= e; w; n; s (62)
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Substituting the term �ṁ′ in (62) as in (60) yields

APp′
P +

∑
i
Aip′

i =−�ṁ∗ −∑
c
Bc; i=E;W;N; S; c= e; w; n; s (63)

where A are the coe�cients of the unknown variables resulting from the discretized expressions
for the pressure corrections. If the last terms on the right-hand side (RHS) of (63) are omitted
because they involve the velocity corrections, which are not yet known, one obtains the
pressure-correction equation

APp′
P +

∑
i
Aip′

i =−�ṁ∗; i=E;W;N; S (64)

Applying (64) on all CVs of the domain results to a system of equations, the solutions of
which gives the pressure corrections on each computational node. These are used further to
correct the velocity values, which will now satisfy the continuity equations. However, they
do not satisfy the momentum equations, so another iteration must be performed using the
solutions from the previous time step as an initial guess. This iteration procedure continues
until reaching the desired accuracy. It should be noted that if the last term on the RHS of
(63) is neglected the SIMPLE algorithm may lead to divergence and therefore underrelaxation
should be used. The solution of the systems of equations (56), (57) and (64) is carried out
using Stone’s method [24].

4. RESULTS AND DISCUSSION

4.1. Preliminary remarks

In stenotic �ows, of particular interest are the phenomena of the vortex generation and prop-
agation as well as the distribution of the wall shear stress (WSS). These are considered the
most prominent attributes for blood �ows because of their relation to atheroma formation in
arteries. To study these phenomena, we have considered three di�erent �ow cases. The �rst
case concerns steady and the other two unsteady �ows. For Newtonian �ow in all cases the
value of the Reynolds number used in the calculations is Re=360 as in the work by Rosenfeld
[4, 5]. Additional parameters should be de�ned for non-Newtonian models, and their values
were chosen according to measurements by Spiller et al. [25] pertinent to stenotic arteries.
These are ReCA =360, Bi=0:675 for the Casson model, RePL =110 for the power-law model
and ReQU =931, �∗c =0:364 for the Quemada model. The above values have been chosen
under the assumption that the in�ow rate or the mean in�ow velocity is the same for com-
putations based on di�erent models. Choosing the same value for both Re and ReCA implies
that for the Newtonian case the viscosity � corresponds to �∞ of the Casson model. The
di�erence between the two unsteady cases is the value of the Strouhal number; Str=0:05 and
0.368 have been used. The higher Strouhal number has been chosen because comparisons with
the corresponding results of Rosenfeld [4, 5] can be obtained. The use of di�erent Strouhal
numbers is analogous to the change from normal to tachycardial conditions.
Three grids were tested namely 225× 50, 450× 100 and 900× 150. The grid spacing was

uniform in both x and y directions. From the dimensionless WSS distribution on the upper
wall for a steady Newtonian �ow with Re=360 (Figure 1(iii)), it can be seen that grid inde-
pendence is achieved for a 450× 100 grid. Therefore, this grid was used in all computations
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conducted in the present study. Another important aspect is the length of the downstream
segment Ld (Figure 1(i)), which should be long enough to allow a fully developed �ow at
the outlet. Downstream of the stenosis, the �ow variations extend longer for the unsteady
Newtonian �ow with Re=360 and Str=0:05, at t=T =0:2. For this �ow case the value of
Ld = 28:34 was found su�cient for the velocity pro�le to regain its fully developed attributes
at the outlet boundary (Figure 1(iv)). For the unsteady cases it is also important that the
results converge in time, i.e. they remain the same (based on an accuracy threshold 10−8 for
double precision calculations) between two consecutive unsteady cycles. Calculations were
carried out for several cycles and converged solution was obtained after six cycles. This was
veri�ed by comparing the upper wall WSS distribution in two consecutive cycles at t=T =0:2
for the Newtonian �ow with Re=360 and Str=0:368 (Figure 1(v)). The present results were
compared (Figure 1(vi)) with the experimental and numerical results of Rosenfeld [5] and
Park [26], respectively, with respect to the streamwise location of the centre of the B1 vortex
throughout the cycle (see 4.3.1(i) and Figure 2(ii) for nomenclature of vortices). The compar-
ison with the experiment [2, 6] concerns the Newtonian case with Re=180 and Str=0:368,
while the comparison with the numerical results of Rosenfeld [5] has been obtained for the
same Strouhal number and Re=360. The present results are in a close agreement with both
the aforementioned previous numerical data and experiments (Figure 1(vi)) thus eliminating
any numerical uncertainty.

4.2. Steady case

Prior to examining the unsteady cases an initial investigation was carried out for steady
stenotic �ow using all models. For the Newtonian model the Reynolds number is Re=360,
while the parameters for the non-Newtonian models are obtained as described in Section 2.3,
i.e. in terms of the same in�ow rate with the Newtonian �ow case.
The streamlines for all the models are shown in Figure 1(vii). In all cases, upstream of the

stenosis no eddy is formed and the �ow proceeds smoothly to the constriction. On the lee of
the stenosis a stationary eddy is formed, the size of which is di�erent for every model. For the
Newtonian case this eddy is the largest in size, while a second smaller eddy on the opposite
wall is also generated. In the �ow �eld of the non-Newtonian models the eddy downstream
of the constriction is smaller than the Newtonian case and the second eddy is absent. The
eddy for the Quemada model is the largest with a small di�erence from the eddy for the
Casson model, while the eddy for the power-law model is the smallest one. The di�erence
in size of the eddy for each of the models can be explained from the fact that for this case,
the behaviour of the power-law model is the most viscous followed in order of decreasing
viscous behaviour by the Casson, the Quemada and �nally the Newtonian model.
The dimensionless pressure distribution for every model is shown in Figure 1(viii). In this

�gure, the maximum and minimum dimensionless pressure values are also shown and between
these values 15 contours have been plotted. It can be seen that every model exhibits similar
patterns, which can be analysed in three parts. In the �rst part the �ow is far upstream, still
undisturbed and therefore the pressure drop is uniform. In the second part the �ow is within
the stenosis area where the pressure drops rapidly as the �ow enters the constriction and
reaches its minimum value at a point slightly further from the minimum constriction width.
The pressure increases as the �ow exits the stenosis. In the third part the �ow is su�ciently
far downstream of the stenosis and has therefore regained its fully developed attributes and
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Figure 2. Instantaneous streamlines for a Newtonian �uid at Re=360, at selected
instants. (i) Str=0:05. (ii) Str=0:368.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:597–635



EFFECT OF BLOOD MODEL ON FLOW THROUGH STENOSIS 613

6 8 10 12 14 16 18 20 22 24 26

 max =50.8  min =-52.4

51.2 

51.6 

148.0 

76.0 

101.8 

t/T 

0.1

0.3

0.5

0.7

0.9

1.0

(ii) 

(i) 

6 8 10 12 14 16 18 20 22 24 26

 max =104.8 ζ 

ζ ζ 

ζ min =-142.4

115.2  

70.5 

157.2 

89.4 

84.4 

0.1

0.3

0.5

0.7

0.9

1.0

t/T 

-176.9

-72.4

-95.3

-138.0

-48.8

-48.6

-111.7

-147.5

-119.9

-83.8

Figure 3. Instantaneous vorticity distribution for a Newtonian �uid at Re=360, at selected time
instants. (i) Str=0:05. (ii) Str=0:368.

therefore it drops uniformly again. Considering that the dimensionless pressure at the outlet
is equal to 1 for every model case, then the highest dimensionless pressure upstream appears
in the power-law case and becomes lower (in decreasing order) in the cases of the Casson,
Quemada and Newtonian models.
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(i) (ii)

(iii) (iv)

Figure 4. Dimensionless shear stress distribution for a Newtonian �uid at Re=360, at selected
time instants. (i) Lower wall, t′=0:1–0.5, Str=0:05. (ii) Lower wall, t′=0:6–1.0, Str=0:05.
(iii) Upper wall, t′=0:1–0.5, Str=0:05. (iv) Upper wall, t′=0:6–1.0, Str=0:05. (v) Lower wall,
t′=0:1–0.5, Str=0:368. (vi) Lower wall, t′=0:6–1.0, Str=0:368. (vii) Upper wall, t′=0:1–0.5,

Str=0:368. (viii) Upper wall, t′=0:6–1.0, Str=0:368.

4.3. Unsteady cases

4.3.1. Flow �eld. (i) Str=0:05: For the Str=0:05 case, the streamline patterns are shown
in Figures 2(i), 5(i), 8(i) and 11(i) for the Newtonian, Casson, power-law and Quemada
models, respectively. The streamline patterns are shown for ten equally spaced time instants
of the period. Some general �ow phenomena occur for all models and will be described for
the Newtonian case (Figure 2(i)).
At the beginning of the new period, the �ow �eld has a complicated structure in which

two series of eddies on the upper and lower walls are prominent (t′=0:1). The core �ow
is wavy and beneath and above the waves’ crests and troughs, eddies are located. For the
sake of reference, starting from the lee of the constriction, the �rst region above a trough is
named ‘A1’, the second ‘A2’ and so on. In the same manner, the �rst region beneath a crest
on the lower wall is named ‘B1’, the second ‘B2’ and so on. Caution must be exercised in
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(v) (vi)

(viii)(vii)

Figure 4. Continued.

naming eddies in this way, however, since an eddy named ‘A1’ for example, may be named
‘A2’ after a while because of a new eddy forming upstream. Although at this stage, which
is the �rst half of the period, the in�ow rate is steady, the streamline patterns progressively
change owing to the accumulation of transient e�ects from the second half of the previous
cycle. At t′=0:2 the eddy in the lee of the constriction becomes more elongated and the rest
of the eddies move downstream and become weaker (t′=0:2–0.3). At the end of the �rst
half (t′=0:5) the �ow seems to be stabilizing. Most eddies have vanished except the eddy
in the lee of the constriction, the size of which no more alters, and another small eddy at
the opposite wall. As the acceleration phase starts, the core �ow is straightened out and the
eddy in the lee of the constriction becomes smaller in size (t′=0:6). In addition, the eddy
in the lee of the constriction becomes further elongated and the eddy on the opposite wall
reappears (t′=0:7). As the deceleration phase starts, the core �ow becomes more wavy and
more eddies form, while in the region B1 the eddy-doubling phenomenon occurs: beneath
one crest, two counter-rotating eddies form (t′=0:8). As the deceleration progresses, the
width of the core �ow decreases and the eddy-doubling phenomenon occurs for all eddies
(t′=0:9–1.0). In addition, the large eddies break into two co-rotating parts that coexist above
or under a trough or crest, as in region A2 for t′=1:0. As can be seen in B1 for t′=1:0,

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:597–635



616 P. NEOFYTOU AND D. DRIKAKIS

the second co-rotating eddy has initiated another eddy-doubling phenomenon resulting in the
co-existence of four eddies underneath the same crest. All eddies tend to grow larger in size
and propagate downstream during this phase.
In the aforementioned �ow phases, the phenomena associated with the non-Newtonian mod-

els are di�erent from those in the Newtonian case. For the Casson model (Figure 5(i)) at
t′=0:1, the only region that accommodates two eddies is A1, downstream of which one eddy
occurs beneath or above a trough or a crest. Eddies are becoming rapidly weaker (t′=0:2)
and subsequently one stabilized, elongated eddy prevails (t′=0:3) the size of which remains
unchanged throughout the steady phase. The only di�erence between the patterns for the re-
maining of the steady phase (t′=0:3–0.5) is that the �ow is still wavy at t′=0:1, but not
to the extent that it allows further eddy forming. The stationary eddy is very much smaller
than in the corresponding Newtonian case and no second eddy (B1) exists. The patterns at
the beginning of the acceleration phase (t′=0:6–0.7) are quite similar to the Newtonian �ow
patterns. Advancing to t′=0:8 there is no eddy-forming phenomenon in B1 and B2 does
not exist. This phenomenon does not appear at any of the following time instants and eddy-
breaking appears only for A1 and B1 at t′=1:0. During this phase, deceleration causes more
eddies to form but their size is substantially smaller than in the Newtonian case.
In the case of the power-law model (Figure 8(i)), at the beginning of the steady phase

(t′=0:1) the behaviour seems more viscous than in the aforementioned cases. Region A3 is
barely formed whereas B3 is absent. These eddies dissipate faster than in the previous cases
and by t′=0:2 only A1 exists. The �ow is wavy but progressively straightens until the end
of the steady phase (t′=0:5). At the acceleration phase (t′=0:6–0.7), eddy A1 is small but
becomes progressively larger and B1 is formed similarly as in the previous cases. At the
deceleration phase, A2 is formed (t′=0:8) as in the previous cases, but during the rest of the
phase, eddy forming is restricted to A2 and B2 at t′=0:9 and 1:0, respectively. Eddies become
stronger at the end of the phase, but no eddy-doubling phenomenon or even eddy-breaking is
evident.
In the case of the Quemada model (Figures 5(i)–11(i), at the beginning of the steady

phase (t′=0:1) the phenomena from the previous cycle are still intense. Next, at t′=0:2, the
size of the eddies is between the corresponding sizes in the Newtonian and Casson cases.
Further into the steady phase, all eddies except A1 dissipate, as in the Casson case, but as the
�ow stabilizes A1 is longer than in the Casson case. At the deceleration phase, eddy forming
is similar to the Casson case. The only di�erence is that the eddy-doubling phenomenon is
evident here (B1 at t′=0:9–1.0) and eddy breaking occurs sooner (t′=0:9).
(ii) Str=0:368: For Str=0:368 case, the streamline patterns are shown in Figures 2(ii),

5(ii), 8(ii) and 11(ii) for the Newtonian, Casson, power-law and Quemada models, respec-
tively. The general phenomena that occur for all models will be described for the Newtonian
model (Figure 2)(ii)). During the steady phase (t′=0:1–0.5) the �ow �eld is highly dis-
turbed and alters throughout the phase, despite the steady in�ow conditions. This is due to
the accumulation of transient e�ects from the second half of the previous cycle, which are
more intense than for Str=0:05. The series of eddies on the upper and lower walls propa-
gate progressively downstream as the far downstream eddies reduce in size. Eddy doubling
is evident, especially for eddy A1 and the eddy-breaking phenomenon also occurs. As the
acceleration phase starts (t′=0:6) the far downstream eddies disappear and the rest become
smaller in size. Later (t′=0:7) only two eddies remain, one on each wall. At the beginning
of the deceleration phase (t′=0:8) a new eddy forms in the lee of the constriction as the
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Figure 5. Instantaneous streamlines for a Casson �uid at ReCA =360; Bi=0:675, at selected time
instants. (i) Str=0:05. (ii) Str=0:368.
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Figure 6. Instantaneous vorticity distribution for a Casson �uid at ReCA =360; Bi = 0:675, at selected
time instants. (i) Str=0:05. (ii) Str=0:368.

existing ones move downstream. As the deceleration proceeds (t′=0:9), more eddies form
downstream and the core �ow becomes more wavy. Another eddy also forms opposite A1. At
the end of the deceleration phase (t′=1:0) the core �ow region is narrower and a series of

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:597–635



EFFECT OF BLOOD MODEL ON FLOW THROUGH STENOSIS 619

 

  

 

 

(iii)

(ii)(i)

(iv)

Figure 7. Dimensionless shear stress distribution for a Casson �uid at ReCA =360; Bi=0:675,
at selected time instants. (i) Lower wall, t′=0:1–0.5, Str=0:05. (ii) Lower wall, t′=0:6–1.0,
Str=0:05. (iii) Upper wall, t′=0:1–0.5, Str=0:05. (iv) Upper wall, t′=0:6–1.0, Str=0:05. (v)
Lower wall, t′=0:1–0.5, Str=0:368. (vi) Lower wall, t′=0:6–1.0, Str=0:368. (vii) Upper wall,

t′=0:1–0.5, Str=0:368. (viii) Upper wall, t′=0:6–1.0, Str=0:368.

eddies form on both walls. Eddy breaking occurs for eddy B2 and eddy doubling is initiated
for both A2 and B2 in the Newtonian case; this is more evident at t′=0:1.
For the Casson case (Figure 5(ii)) at the beginning of the steady phase (t′=0:1) the

downstream eddies are fewer and less intense compared to the Newtonian case, and eddy
doubling for A2 is absent. At t′=0:2 the eddy regions reduce to four on the upper wall and
three on the lower wall. For the rest of the phase (t′=0:3–0.5) three eddy regions at each
wall exist in contrast to the Newtonian case where all eddies from the beginning of the phase
exist till the end, though they are smaller in size. At the beginning of the acceleration phase
(t′=0:6) only two eddies, one on each wall, are evident and reduce in size progressively
(t′=0:7). At the beginning of the deceleration phase (t′=0:8) the �ow patterns are similar
to the Newtonian case whereas later (t′=0:9) the eddy generation is less intense with only
two new eddies, B1 and A3, being formed. At the end of the deceleration phase, the patterns
are again similar to the Newtonian case but the eddies downstream are weaker.
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Figure 7. Continued.

In the case of the power-law model (Figure 8(ii)) at the beginning of the steady phase
(t′=0:1), as in the Casson case, no eddy doubling is evident. The downstream eddies are
weaker and fewer than in either the Newtonian or the Casson case. Eddy areas reduce to three
only on the upper and two on the lower wall for t′=0:2, and remain so until the end of the
steady phase. At the beginning of the acceleration phase (t′=0:6) the eddies are reduced to
one at each wall, as in the Casson case, and become progressively weaker (t′=0:7). At the
beginning of the deceleration phase (t′=0:8) only A1 in the lee of the constriction is formed,
as in the Newtonian and Casson cases, but later at t′=0:9 only B1, additionally, forms and
eddy forming does not occur downstream of the already existing eddies. At the end of the
deceleration phase (t′=1:0) the patterns are similar to those in the Casson case with intense
eddy formation downstream while eddies are weaker than for the Newtonian case.
In the case of the Quemada model (Figure 11(ii)), at the beginning of the steady phase

(t′=0:1) the �ow is highly disturbed with a series of eddies on each wall. The patterns are
similar to the Casson case where eddy doubling is evident in B2, but not in A2. Progressively
the eddies become fewer, owing to their dissipation far downstream, reducing to three only on
each wall by the end of the phase (t′=0:5). The secondary eddy at A1, resulting from eddy
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Figure 8. Instantaneous streamlines for a power-law �uid at RePL =110, at selected time
instants. (i) Str=0:05. (ii) Str=0:368.
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Figure 9. Instantaneous vorticity distribution for a power-law �uid at RePL =110, at selected time
instants. (i) Str=0:05. (ii) Str=0:368.

doubling at the beginning of the steady phase, is still evident at the end of the phase, unlike
the rest of the non-Newtonian models. At the beginning of the acceleration phase (t′=0:6)
only two eddies are evident, which progressively reduce in size (t′=0:7) just as in the rest
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(i) (ii)

(iii) (iv)

Figure 10. Dimensionless shear stress distribution for a power-law �uid at RePL =110, at selected
time instants. (i) Lower wall, t′=0:1–0.5, Str=0:05. (ii) Lower wall, t′=0:6–1.0, Str=0:05.
(iii) Upper wall, t′=0:1–0.5, Str=0:05. (iv) Upper wall, t′=0:6–1.0, Str=0:05. (v) Lower wall,
t′=0:1–0.5, Str=0:368. (vi) Lower wall, t′=0:6–1.0, Str=0:368. (vii) Upper wall, t′=0:1–0.5,

Str=0:368. (viii) Upper wall, t′=0:6–1.0, Str=0:368.

of the non-Newtonian cases. At the beginning of the deceleration phase (t′=0:8) A1 forms,
followed by B1; B3 and A3 at t′=0:9. This is similar to the Casson case, considering that B3
barely forms. At the end of the deceleration phase (t′=1:0) a series of eddies on the upper
and lower walls is formed. The �ow patterns are similar to the other non-Newtonian cases.

4.3.2. Vorticity �eld. (i) Str=0:05: An important aspect for studying the vortex-formation
mechanism is the vorticity �eld. The vorticity is expressed as �= @v=@x − @u=@y and its dis-
tribution for selected time instants is shown in Figures 3(i), 6(i), 9(i) and 12(i) for the
Newtonian, Casson, power-law and Quemada models, respectively. The maximum and mini-
mum vorticity values are also given and between these values are 25 contour increments for
all time steps in all cases. Starting from the acceleration phase, increased vorticity is generated
at the throat of the constriction and is positive and negative on the lower and upper wall,
respectively. This high vorticity is convected downstream by the core �ow forming a tongue,
which rolls up and forms eddy A1 (t′=0:7). The roll up of the vorticity tongue from the
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(vi)

(viii)(vii)

(v)

Figure 10. Continued.

lower wall creates eddy B1. In the deceleration phase the eddy-doubling phenomenon occurs
as previously mentioned. This is because vorticity of opposite sign is generated beneath the
primary eddy B1 owing to the non-slip condition on the wall. This is convected upstream,
then towards the centre of the channel and rolls up clockwise forming the counter-rotating
secondary eddy. At t′=0:9 the vorticity cancellation induced by the convection of counter
vorticity from beneath the primary eddy B1 towards the centre of the channel causes the
primary eddy to break up into two co-rotating eddies. Furthermore, the vorticity in A2 and
B2 is so intense that the counter vorticity generated between each of the vortices and the wall
is su�cient to induce eddy doubling. At the end of the deceleration phase (t′=1:0), eddy
break-up through the mechanism of vorticity cancellation, as described above, occurs also at
A2 and B2. It is worthwhile mentioning that for t′=1:0, the maximum and minimum vorticity
values are no longer met at the throat of the constriction but beneath and above the primary
eddies B1 and A1, respectively. At the beginning of the steady phase (t′=0:1) the generation
of vorticity at the throat is much lower. Therefore, di�usion prevails and since convection
is not so strong as to feed the distal eddies with su�cient vorticity, these are starting to
dissipate. This is more obvious later (t′=0:3) where the vorticity generation at the throat is
on the same levels, whereas, owing to di�usion, the wavy vorticity contours in the core �ow
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Figure 11. Instantaneous streamlines for a Quemada �uid at ReQU =931; �∗c =0:364, at selected time
instants. (i) Str=0:05. (ii) Str=0:368.
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are starting to straighten out. At t′=0:5 the vorticity patterns are very close to stabilization
and the two vorticity tongues emerging from the upper and lower walls feed eddies A1 and
B1, respectively. Throughout the steady phase the maximum and minimum values of vorticity
are met at the throat and remain practically unchanged during the simulation.
For the Casson model (Figure 6(i)) at the beginning of the acceleration phase the vorticity

generated at the throat is on the same level as for the Newtonian �ow. The di�usion rate
though, is more dominant than in the Newtonian case and this can be seen by comparing the
lengths of the vorticity tongues emerging from the throat. These extend to a greater length in
the Newtonian case. At the end of the deceleration phase (t′=1:0) the vorticity beneath eddy
B1 and above A1 is more intense than at the throat. The di�usion rates are again strong and
this can be seen from the fact that the vorticity beneath B1 cannot be convected far towards
the centre of the channel so that roll-up can be possible, which would lead to eddy doubling.
Vorticity cancellation is evident though, and leads to the break-up of eddies A1 and B1.
This is the only time instant in which the values of maximum and minimum vorticity di�er
markedly from the corresponding Newtonian values. This is again due to increased di�usion
rates. At the beginning of the steady phase (t′=0:1) the vorticity contours are not so ‘kinked’
as in the Newtonian case, which accounts for the decreased convection rate. The rest of the
steady phase is similar to the corresponding Newtonian, but the vorticity contours straighten
out more quickly.
For the power-law model (Figure 9(i)), at the beginning of the acceleration phase the

vorticity generated at the throat is again on the same level as for the Newtonian �ow. In
this case the vorticity tongues emerging from the throat extend to an even shorter length than
in the Casson and Newtonian cases. The e�ect of this high di�usion rate is that it is even
harder for the vorticity tongues to roll up and create eddies and this can be seen from the fact
that no eddy doubling occurs. In fact, for t′=1:0, the high counter vorticity induced from
underneath eddy B1 is so quickly di�used that no breaking up of eddy B1 occurs. During the
steady phase the high di�usion rates of vorticity are evident from the less ‘kinked’ contours.
Indeed the contours straighten out more quickly than for the Casson case.
For the Quemada model (Figure 12(i)) the vorticity dissipation rates seem to be between

those of the Casson and the Newtonian models. At the beginning of the acceleration phase
the length up to which the vorticity tongues extend is between the Newtonian and the Casson
cases. The minimum and maximum values of vorticity throughout the cycle are very close
to the Casson case. The vorticity contours at the end of the deceleration phase (t′=1:0) are
more ‘kinked’ than in the Casson case, which implies that the dissipation rates are lower. This
can also be seen by examining the vorticity contours for the steady phase. These are initially
very complex and they do not straighten out so quickly as for the rest of the non-Newtonian
models. In fact, they still have to stabilise by the end of the steady phase (t′=0:5).
It is worthwhile mentioning that the minimum and maximum levels of vorticity for the

Str=0:05 case, are similar for all the models throughout the cycle except at the end of the
deceleration phase. This is due to the fact that at this instant the area where the peak val-
ues of vorticity are found is not the same for all models. This can be above and beneath
A1 and B1, respectively, or at the throat of the constriction. In the �rst case, the dissipa-
tion rate is low and therefore high vorticity generated previously still exists. In the second
case, the dissipation rate is high and therefore high vorticity from previous instants has al-
ready dissipated and the peak values are found at the throat, which is the source of vorticity
generation.
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Figure 12. Instantaneous vorticity distribution for a Quemada �uid at ReQU =931; �∗c =0:364, at selected
time instants. (i) Str=0:05. (ii) Str=0:368.

(ii) Str=0:368: The vorticity �eld for the Str=0:368 case and for selected time instants
is shown in Figures 3(ii), 6(ii), 9(ii) and 12(ii) for the Newtonian, Casson, power-law and
Quemada models, respectively. Between the maximum and minimum values given for each
time instant, there are 30 isocontour increments for all time steps in all cases. The main �ow
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(i) (ii)

(iv)(iii)

Figure 13. Dimensionless shear stress distribution for a Quemada �uid at ReQU =931; �∗c =0:364, at
selected time instants. (i) Lower wall, t′=0:1–0.5, Str=0:05. (ii) Lower wall, t′=0:6–1.0, Str=0:05.
(iii) Upper wall, t′=0:1–0.5, Str=0:05. (iv) Upper wall, t′=0:6–1.0, Str=0:05. (v) Lower wall,
t′=0:1–0.5, Str=0:368. (vi) Lower wall, t′=0:6–1.0, Str=0:368. (vii) Upper wall, t′=0:1–0.5,

Str=0:368. (viii) Upper wall, t′=0:6–1.0, Str=0:368.

phenomena will be described for the case of the Newtonian model (Figure 3(ii)). Starting
from the acceleration phase, the vorticity generation is stronger than for Str=0:05. The highest
vorticity level occurs on the upper wall of the throat of the constriction and the lowest
level on the lowest wall. These intense vorticity tongues extend to a distance downstream
of the constriction and their subsequent roll-up forms the eddies shown in Figure 2(ii). The
vorticity generation is more intense than in the case of Str=0:05 and that is due to the higher
acceleration rate. For t′=0:7 the maximum and minimum vorticity levels are again higher as
regards absolute values than for Str=0:05 and are found in the same positions at the throat of
the constriction. At the beginning of the deceleration phase the vorticity levels generated at the
throat start to drop owing to the decreasing of the in�ow rate. This drop continues until the
end of the deceleration phase (t′=1:0) and the maximum and minimum levels of vorticity are
no longer found at the throat of the constriction but beneath B1 and above A1, respectively.
At the beginning of the steady phase (t′=0:1) the vorticity generation at the throat drops
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(v) (vi)

(viii)(vii)

Figure 13. Continued.

even more while the levels of vorticity above and beneath A1 and B1, respectively, continue
to rise until t′=0:3. This is due to the accumulation of transient e�ects from the second
half of the previous cycle which are more intense than for Str=0:05. The mechanisms of
vorticity generation and di�usion described previously for Str=0:05 cause eddy doubling and
eddy break-up for eddies A1 and B2. At t′=0:4 and while vorticity generation at the throat
remains unaltered, the vorticity levels above A1 and beneath B1 begin to drop. This is due
to the fact that di�usion mechanisms dominate at the later stages of the steady phase.
In the case of the Casson model (Figure 6(ii)), at the beginning of the acceleration phase

the vorticity generation at the throat is slightly lower than for the Newtonian case and it
remains so until the end of the deceleration phase (t′=1:0). During the steady phase, the
vorticity levels beneath B1 and above A1 prevail over the vorticity levels at the throat but are
much weaker compared to the Newtonian case. Their strength though, is su�cient to induce
eddy-doubling and eddy-breaking phenomena.
In the case of the power-law model (Figure 9(ii)), at the beginning of the acceleration

phase the vorticity generation at the throat is the highest among all the models. A rapid
drop follows, which by the end of the deceleration phase (t′=1:0) brings the peak values of
vorticity to their lowest level among all models. During the steady phase (t′=0:1–0.5), the
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vorticity levels are still the weakest compared to the rest of the models and this accounts for
the high di�usion mechanisms that occur for the power-law model. Eddy doubling occurs for
A1 but not for B2, in the area of which the convection and di�usion of the vorticity from
beneath induces eddy breaking only.
In the case of the Quemada model (Figure 12(ii)), at the beginning of the acceleration

phase the maximum and minimum vorticity levels are slightly weaker than for the Newtonian
case and are very close to the Casson model. The same applies to the deceleration and steady
phases where the vorticity peak levels are between the Casson and Newtonian cases.

4.3.3. Wall shear stress. (i) Str=0:05: From the physiological point of view, the wall shear
stress is a very important factor. The dimensionless wall shear stress (DWSS) distributions
on the lower and upper wall for the Str=0:05 case are shown in Figures 4(i)–4(iv) for the
Newtonian model, 7(i)–7(iv) for the Casson model, 10(i)–10(iv) for the power-law model
and 13(i)–13(iv) for the Quemada model.
The distribution on the lower and upper walls, for all models, shows certain similarities.

First, there are large variations in the DWSS distribution in the vicinity of the stenosis, caused
by the unsteadiness of the in�ow rate in conjunction with the existence of a stenotic segment.
During the steady phase there is a maximum of the DWSS at the throat of the constriction,
the value of which remains unchanged throughout the whole phase. At the beginning of the
steady phase (t′=0:1) large variations in the DWSS appear downstream of the constriction
owing to the existing eddies. Local minimum peaks correspond to the interaction between
an eddy and the wall and maximum peaks correspond to the diversion of the core �ow
onto the wall owing to the existence of an eddy on the opposite wall. These peak values
move progressively downstream and become lower in agreement with the eddy propagation
and di�usion. By the end of the steady phase (t′=0:5) the peaks downstream diminish and
only the maximum peak at the throat of the constriction is evident. At the beginning of the
acceleration phase (t′=0:6) the DWSS values along the wall are higher. This is obvious in
the case of the peak value at the throat of the constriction. Later at t′=0:7 the peak value
at the constriction reaches its highest value and at the beginning of the deceleration phase
(t′=0:8) the peaks of the DWSS distribution downstream of the constriction are starting to
develop. These become progressively more intense (t′=0:9) and gain their highest levels (as
regards absolute values) at the end of the deceleration phase (t′=1:0) whereas the peak at
the throat of the constriction drops to its lowest level throughout the cycle.
Although the distribution is similar for all the models, the peak values of the DWSS for

every model throughout the cycle are markedly di�erent. Table I gives the maximum and
minimum values of the DWSS under stenotic ((DWSSmax)st and (DWSSmin)st) and under
normal ((DWSSmax)n and (DWSSmin)n) conditions on the upper and lower walls, for all
models. Normal conditions imply a channel with no stenosis but the same in�ow boundary
conditions. The distance and time instants at which the values are found are also given.
For normal conditions, it can be seen that the values of DWSSmax and DWSSmin throughout

the cycle are similar for all models and the time instant at which they occur is identical.
The e�ects under stenotic conditions are markedly di�erent. (DWSSmax)st on the lower wall
is lower for the Newtonian case and almost the same for the non-Newtonian models. The
distance and time instant at which it occurs is the same for all models. The absolute value of
(DWSSmin)st on the lower wall takes its largest value for the Newtonian model and its smallest
value for the power-law model. Moreover, the distance at which it occurs is shorter for the
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Table I. Peak values of DWSS on the lower (Lo) and upper (Up) walls under stenotic and
normal conditions for Str=0:05.

Newtonian Casson Power law Quemada

Value x′ t′ Value x′ t′ Value x′ t′ Value x′ t′

Lo (DWSSmax)st 0.40 8.8 0.7 0.47 8.8 0.7 0.47 8.8 0.7 0.46 8.8 0.7
(DWSSmin)st −0:24 17.0 0.9 −0:21 16.7 0.9 −0:17 16.6 0.9 −0:22 16.7 0.9

Up (DWSSmax)st 0.43 8.8 0.7 0.50 8.8 0.7 0.50 8.8 0.7 0.49 8.8 0.7
(DWSSmin)st −0:23 14.4 0.9 −0:22 14.2 0.9 −0:20 14.0 0.9 −0:23 14.2 0.9
(DWSSmax)n 0.05 — 0.7 0.08 — 0.7 0.09 — 0.7 0.07 — 0.7
(DWSSmin)n −0:01 — 1.0 0 — 1.0 0.01 — 1.0 0 — 1.0

non-Newtonian models. Similarly, on the upper wall (DWSSmax)st takes its smallest value for
the Newtonian models but the values for all models are higher than the corresponding ones on
the lower wall, although they occur at the same distance and time instant. The absolute value
of (DWSSmin)st on the upper wall is very close for the Newtonian, Casson and Quemada
models and is slightly lower for the power-law model. The distance at which it occurs is
identical for the Casson and Quemada models and the time at which it occurs is identical for
all models.
Another important aspect that should be taken into account, owing to its haemodynamic

e�ects in realistic conditions, is the amplitude of the oscillating DWSS at a certain point on
the wall. Table II gives the values of the maximum amplitudes (Amax) of the DWSS on the
upper and lower walls for all models throughout the cycle and the distances at which these
occur.
On the lower wall, the amplitude is greatest for the Newtonian model followed, in order of

decreasing magnitude, by the Quemada, then the Casson and �nally the power-law model. It
can be seen that the distance at which Amax occurs is at a point downstream of the constriction
and is similar for all models except the power-law model in the case of which Amax occurs
at the throat of the constriction. This phenomenon of Amax being greater upstream is related
to the eddy-propagation phenomenon. For example, at a certain point there is a positive peak
of DWSS due to diversion of the core �ow towards it because of the presence of an eddy on
the opposite wall. Later, owing to eddy propagation, a negative peak of DWSS will occur at
this point owing to a forthcoming eddy that now occupies the point. This can also be seen
in Figure 4(ii) for the point x′=17:1 between t′=0:8 and 1.0. This phenomenon, though
evident in the cases of the Newtonian, Casson and Quemada models, does not occur for the
power-law model because of the rapid dissipation of eddies.
On the upper wall Amax occurs at the throat of the constriction and its values are similar

for all models. This value of Amax for the Newtonian case is much lower than for the lower
wall. This is not true for the non-Newtonian models in the case of which the values of Amax
for the upper and lower walls are similar.
(ii) Str=0:368: The DWSS distribution on the lower and upper wall for the Str=0:368

case is shown in Figures 4(v)–4(viii) for the Newtonian model, 7(v)–7(viii) for the Casson
model, 10(v)–10(viii) for the power-law model and 13(v)–13(viii) for the Quemada model.
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Table II. Amplitude of the DWSS on the lower and upper walls under
stenotic conditions for Str=0:05.

Newtonian Casson Power law Quemada

Value x′ Value x′ Value x′ Value x′

Amax Lower W 0.39 17.3 0.31 17.1 0.29 8.8 0.34 17.1
Upper W 0.30 8.7 0.33 8.7 0.31 8.7 0.33 8.7

The general phenomena in the DWSS distribution occurring for all models are described
below. During the steady phase, large variations in the DWSS occur for both the lower and
the upper walls as a result of the unsteadiness of the in�ow rate and the presence of the
constriction. First, a peak in the distribution can be seen at the throat of the constriction that
remains unaltered throughout the steady phase. Further downstream the �uctuations are time
dependent and the peak values are due to the presence of eddies. These �uctuations are much
more intense than for Str=0:05 and this is due to the stronger eddies formed as a result of
the higher deceleration rates. The most prominent peaks in the distribution are the minimum
ones occurring just after the stenosis, corresponding to eddies A1 and B1 on the upper and
lower walls, respectively. Every peak value changes as a function of time according to the
eddy-strength change. The peaks of DWSS, as previously mentioned for Str=0:05, correspond
to the core �ow being diverted towards the wall owing to the existence of an eddy at the
opposite wall. During the steady phase, the smallest value of the DWSS occurs at t′=0:3 for
both the upper and the lower wall. At the beginning of the acceleration phase (t′=0:6) the
peak value at the throat rises while the peak values downstream of the constriction become
weaker. The peak at the throat at t′=0:7 reaches its maximum value throughout the cycle and
then drops progressively in the deceleration phase. It reaches its minimum value throughout
the cycle at the end of the deceleration phase (t′=1:0).
Despite the similarities in the distribution of the DWSS between the models, the di�erences

between the peaks that each model exhibits are most important. These peak values are given
in Table III for DWSS under stenotic and normal conditions (the nomenclature used in the
table is the same as for Str=0:05) along with the time instant and distance at which these
are found.
Under normal conditions the DWSSmin is practically the same for all models and DWSSmax

is slightly higher in the cases of the non-Newtonian models. In addition, the time instants, at
which each of the DWSSmin and DWSSmax are found, are the same for all models. At stenotic
conditions, marked di�erences are evident between the peak values of DWSS that each model
exhibits. On the lower wall DWSSmax is found at the throat of the constriction at t′=0:7,
for all models. The values for the non-Newtonian models are very close, but far from the
Newtonian case for which DWSSmax is lower. DWSSmin is found at the same distance and
time instant for all models and the values are very close for all models with the exception of
the power-law case for which the value is slightly higher. On the upper wall the results for
DWSSmin are similar to the results for the lower wall. The values of DWSSmin are again very
close for the non-Newtonian models and far from the value for the Newtonian case, which
is lower. The peak values for all models occur at the same distance and time instant. In the
case of DWSSmax there are substantial di�erences between the models. The Newtonian model
has the lowest value, followed by the Quemada, then the Casson and �nally the power-law
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Table III. Peak values of DWSS on the lower (Lo) and Upper (Up) walls under stenotic
and normal conditions for Str=0:368.

Newtonian Casson Power law Quemada

Value x′ t′ Value x′ t′ Value x′ t′ Value x′ t′

Lo (DWSSmax)st 0.43 8.8 0.7 0.51 8.8 0.7 0.50 8.8 0.7 0.49 8.8 0.7
(DWSSmin)st −0:40 13.0 0.3 −0:39 13.0 0.3 −0:36 13.0 0.3 −0:41 13.0 0.3

Up (DWSSmax)st 0.46 8.8 0.7 0.54 8.8 0.7 0.53 8.8 0.7 0.52 8.8 0.7
(DWSSmin)st −0:65 12.2 0.3 −0:53 12.2 0.3 −0:45 12.2 0.2 −0:59 12.2 0.3
(DWSSmax)n 0.10 — 0.7 0.13 — 0.7 0.14 — 0.7 0.12 — 0.7
(DWSSmin)n −0:06 — 1.0 −0:07 — 1.0 −0:07 — 1.0 −0:07 — 1.0

Table IV. Amplitude of the DWSS on the lower and upper walls under
stenotic conditions for Str=0:368.

Newtonian Casson Power law Quemada

Value x′ Value x′ Value x′ Value x′

Amax Lower W 0.49 13.0 0.49 13.0 0.44 12.8 0.50 12.8
Upper W 0.57 12.0 0.59 12.0 0.53 12.1 0.60 12.1

model, which exhibits the lowest in absolute peak value. The distance and time instant at
which the peak values occur are again the same for all models.
Table IV gives the values of the maximum amplitude (Amax) of the oscillating DWSS for

all models. It can be seen that the values of Amax at both the upper and lower wall are much
higher than the corresponding ones for Str=0:05. At the lower wall the values are very close
for all models except the power-law model, which exhibits smaller values. The distance, at
which Amax occurs, is practically the same for all models. The same applies to the upper wall
but the amplitudes occurring there are higher than those on the lower wall. The Newtonian,
Casson and Quemada models seem to have similar behaviour in terms of Amax, while Amax
for the power-law model is always lower.

5. CONCLUSIONS

In this paper, the �ow in a stenotic channel was studied using the Newtonian and three non-
Newtonian models, namely the Casson, power-law and Quemada models. Three di�erent �ow
cases were considered: a steady case with Re=360 and two unsteady cases with the same Re
number but di�erent Strouhal numbers, namely Str=0:05 and 0.368. The calculation of the
corresponding non-Newtonian parameters was carried out assuming the same in�ow rate. The
results show that for Str=0:368 the �ow does not stabilize at the end of the steady phase.
Furthermore, the number of eddies at the steady state is signi�cantly lower for Str=0:05 and
decreases progressively throughout the phase. This decrease is more evident in the case of
the non-Newtonian models. Eddy breaking and eddy doubling are more intense for Str=0:05.
For the non-Newtonian models these phenomena develop to a lesser extent.
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For the unsteady �ow, the acceleration phase contributes to the decrease of the number
of eddies for both unsteady �ow cases and for all models. The deceleration phase though,
is di�erent between the two unsteady cases. For Str=0:368 more crests and troughs occur
in the �ow owing to the more rapid deceleration and to the fact that the width of the core
�ow is greater. The opposite happens for Str=0:05 where the crests and troughs are fewer
in number. For the Quemada and Casson models the phenomena of eddy breaking and eddy
doubling appear to a similar extend and are weaker in the power-law model.
As far as the vorticity generation is concerned, for Str=0:05, at the beginning of the steady

phase the highest absolute vorticity values are found at the throat of the constriction, while for
Str=0:368 these are met above and beneath eddies A1 and B1, respectively. The power-law
model generates higher vorticity at the throat of the constriction during the acceleration phase
whereas these high levels of vorticity drop rapidly and fall below the corresponding levels
for the rest of the models during the steady phase. The vorticity levels for the Casson and
Quemada models are similar and lower than the Newtonian model throughout the cycle.
Regarding the DWSS distribution, this is uniform and similar for all models under non-

stenotic conditions. At stenotic conditions the most intense �uctuations occur on the upper
wall in both unsteady cases. Throughout the cycle the maximum value of DWSS occurs at
the throat and the minimum value in the lee of the constriction. Although with respect to
the maximum values of DWSS for the unsteady cases the models do not di�er, they exhibit
di�erences regarding the minimum values, especially for Str=0:368.
The locations, at which the peak values of DWSS and the maximum amplitudes Amax occur,

are at the throat and in the lee of the constriction. In physiogical �ows this may lead to the
narrowing and elongation of the stenosis. According to Fry [22], DWSS variations up to
the extent reported here can cause irreversible damage to the endothelial lining. This leads to
the hypothesis that variations of DWSS at the wall without the stenosis, caused by the stenosis
at the opposite wall, can initiate atheroma formation at an area just opposite the area where
atheroma already exists, leading to precipitation of the occlusion process in the diseased vessel.
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